
Retrofittable Fuel Usage Monitor and Economizer for Diesel Ground Vehicles 
 

Jason O. Burkholder 
Barron Associates, Inc. 

1410 Sachem Place, Suite 202 
Charlottesville, VA, USA, 22901 

 

Gregory J. Ostrowski 
Southwest Research Institute 

6220 Culebra Road 
San Antonio, TX, USA, 78238 

Christopher S. Beck 
U.S. Army RDECOM 
6501 E. 11 Mile Road 

Warren, MI, USA, 48397 
 

ABSTRACT 
A retrofittable intelligent vehicle performance and fuel economy maximization system 

would have widespread application to military tactical and non-tactical ground vehicles as 
well as commercial vehicles.  Barron Associates, Inc. and Southwest Research Institute 
(SwRI) recently conducted a research effort in collaboration with the U.S. Army RDECOM 
to demonstrate the feasibility of a Fuel Usage Monitor and Economizer (FUME) – an open 
architecture vehicle monitoring and fuel efficiency optimization system.  FUME features 
two primary components:  (1) vehicle and engine health monitoring and (2) real-time 
operational guidance to maximize fuel efficiency and extend equipment life given the 
current operating conditions.  Key underlying FUME technologies include mathematical 
modeling of dynamic systems, real-time adaptive parameter estimation, model-based 
diagnostics, and intelligent usage monitoring.  The research included demonstration of 
the underlying FUME technologies applied to a vehicle simulation constructed using 
SwRI’s RAPTOR™ software toolkit and to LMTV and MRAP vehicle data sets collected 
under the AMSAA Sample Data Collection (SDC) effort.   

 
1 Introduction  

Barron Associates, Inc. and Southwest 
Research Institute (SwRI) recently 
conducted a research effort in collaboration 
with the U.S. Army RDECOM to 
demonstrate the feasibility of a Fuel Usage 
Monitor and Economizer (FUME) – an 
open architecture vehicle monitoring and 
fuel efficiency optimization system. The 
initial phase of the research culminated in 
demonstration of the underlying FUME 

technologies applied to a vehicle 
simulation using SwRI’s RAPTOR™ 
software toolkit and to LMTV and MRAP 
vehicle data sets collected under the 
AMSAA Sample Data Collection (SDC) 
effort. The U.S. Army RDECOM provided 
data sets collected in the field on board 2.5 
Ton Light Medium Tactical Vehicles 
(LMTVs) and Mine Resistant Ambush 
Protected (MRAP) vehicles via the AMSAA 
SDC effort.  Application of FUME 



algorithms to real vehicle data afforded the 
opportunity to address many of the 
complexities encountered in the field, such 
as sensor noise and ambiguity, 
discernment of vehicle state in a complex 
environment, and sensor validation and 
calibration issues. Application of FUME 
algorithms to a validated FMTV RAPTOR 
simulation afforded the opportunity to 
conduct realistic, controlled experiments 
for the purposes of algorithm development 
and demonstration. 

 This paper is organized as follows. 
Section 2 highlights the analysis of the 
LMTV and MRAP data sets, including how 
these data could be exploited by FUME to 
achieve the research objectives. Section 3 
describes the derivation of models from the 
data. Section 4 briefly discusses the 
RAPTOR™ model outputs.  Section 5 
presents the conclusions from the first 
phase of the research effort and looks 
ahead to the next phase. 

 
2 AMSAA Data Processing 

As aforementioned, it is highly valuable 
to analyze MRAP and LMTV data collected 
in the field under the AMSAA SDC in order 
to unequivocally demonstrate the feasibility 
of the envisioned FUME. Importantly, 
FUME application to vehicle data provided 
the opportunity to address many real-world 
issues not typically encountered in a 
simulation-based feasibility study. 
Real-world data collection limitations, such 
as sensor noise, sampling rates, and signal 
quantization can, if not comprehensively 
and systematically addressed, render 
promising modeling and diagnostic 

approaches useless. Any practical 
monitoring system must also 
accommodate the wide range of vehicle 
loads and configurations while maintaining 
acceptable rates of false alarms and 
missed detections. FUME will accomplish 
this goal using, for example, online 
calculations of vehicle resistance, road 
grade, and accelerations. Accurate 
estimation of these quantities depends on 
signal processing methods to overcome 
the potential pitfalls associated with noisy, 
quantized data and miscalibrated sensors. 

 
2.1 Total Variation Regularization 

The AMSAA data channels, by their 
nature, contain data that are noisy or 
quantized or both. For offline data analysis, 
however, it is sometimes necessary to find 
the derivatives of these signals (i.e., 
vehicle acceleration) as well as analyze 
signals where noise has been eliminated. 
Furthermore, the derivatives of the data 
are often jump discontinuous. As a result, 
standard finite difference techniques only 
serve to magnify the noise or round-off 
error present in the data. Although data 
filtering may provide good results for a 
denoised signal, the sensitivity of finite 
difference methods will still exaggerate any 
variation present in the filtered signal. As 
such, a more innovative approach is 
necessary. 

In the framework of inverse problems [1], 
a source of data, d is often considered to 
be the result of some source f and a 
process K, viz.  

 Kf d=  (1) 
However, the inverse of K may be 



ill-conditioned or K may be singular. In 
such a case, then, it is possible to 
approximate the source by regularizing the 
process. A common method, known as 
Tikhonov Regularization, is to minimize a 
functional  

 T(g)= R(f)+ (K(f),g)α ρ  (2) 
where α is a regularization parameter, R is 
a penalty term, and ρ is a data fidelity term. 
A technique recently developed by 
Chartrand [ 2 ] proffers a framework for 
numerical differentiation of nonsmooth data 
in the presence of noise, the formulation of 
which is briefly summarized herein. Given 
a signal f supported on [0,L] with derivative 
u, (1) becomes  

 F(u)= R(u)+ (Au-f)α ρ  (3) 
where A represents the antidifferentiation 

operator, A= ⌡⌠
0

x
 u . In the context of 

numerical differentiation, we seek to use 
the total variation of u as a measure of the 
penalty term. The data fidelity term follows 
logically as a least squares measure. The 
functional then becomes  

 2
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This approach eliminates noise in the 
derivative, u, without eliminating jump 
discontinuities. Applying the 
Euler-Lagrange equations to (3), we arrive 
at a differential equation for the unique 
solution u:  

 *'0 (
| ' |

d u A Au f
dx u

α= − )−  (5) 

where A* represents the L2-adjoint of A, 

A*v= ⌡⌠
x

L
 v. Solution of this equation over 

the interval [0,L] is not as straightforward, 
however. Instead, we cast u(x)=u(x,t) along 
a dummy variable t, and consider (5) to be 
the partial derivative of u with respect to t, 
viz.  

 *' (
| ' |t

d uu A A
dx u

α= − − ).u f  (6) 

We then evolve the solution of this to 
stationarity, which presents us with the 
solution of (5). 

Discretizing ut  about some fixed ∆t 

permits an iterative approach to solving the 

PDE to stationarity. Replacing d
dx u'

|u'| with 

d
dx u'

|un'|, where un is the nth iteration of u 

enables us to use the lagged diffusivity 
method presented in [1]. On a uniform grid 

{xi}
L
0 representing the points at which data 

acquisition takes place, u is computed at 
the halfway points using centered 
difference approximations. Similarly, the 
antiderivative is computed using the 
standard midpoint quadrature. Given m 
points in the data set, we construct a finite 
difference matrix D and an 
antidifferentiation matrix K each 
dimensioned m−1×m, viz.  
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Then, for a small ε let En be a diagonal 

matrix such that  

  (9) ( ) 1/ 22
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−= − +

Then,  

 T
nL xD E D= ∆  (10) 

 T
n nH K K Lα= +  (11) 
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Hn is an approximation to the Hessian of 

the functional F(un). The lagged diffusivity 

method is a gradient search method, and 

the update step sn is the solution to  

  (13) n n nH s g= −

and  
  (14) 1 .n nu u s+ = +

A solution is found when (un+1−un)/∆t  is 

sufficiently small that ut can be considered 

to be in stationarity. The solution u can 
then be integrated by the matrix K to find a 
reconstructed source f . 

Applying the algorithm to the 
accelerometer data yields some 
encouraging results. Since the 
accelerometers are not filtered and are 
subject to structural vibration as well as 
sensor noise, using the data in offline 
analysis will prove difficult unless the signal 
can be denoised effectively. Figure 1 
shows the results of using the TVR method 
to recompute a noiseless accelerometer 
signal from noisy data. 

 
Figure 1: Estimated Vehicle Pitch Using TVR 

 
A further benefit of the TVR method is 

that it offers a means by which accurate 
qualitative data can be obtained. 
Increasing the regularity parameter α 
penalizes the total variation of the 
derivative signal u more severely. As a 
result, the method will be less sensitive to 
quantization or noise. This is useful in 
ignoring spots where the quantized speed 
rapidly changes by a jump discontinuity. 
Because of discretization error in the 



sensor, such a drop in the measured data 
will not correspond to a similarly large 
variation in the actual behavior of the 
vehicle. The TVR method seeks to ignore 
such variational errors. Figure 2 shows the 
road speed and acceleration of a vehicle 
where the TVR data are made less 
sensitive to the quantized data. The effect 
of the small spikes is ignored. This allows 
us to identify times where the vehicle’s 
acceleration is approximately zero, or 
equivalently, where the road speed is 
roughly constant, which will be useful in 
engine and transmission models. Finite 
difference methods, on the other hand, are 
not able to capture this behavior. 

 
Figure 2:  Vehicle Speed and Acceleration 

 
3 Vehicle, Engine, and Environmental 

Models 
The FUME architecture will be 

comprised of several model-based 
diagnostic components, including: (1) 
vehicle fuel efficiency model (2) powertrain 
(engine and transmission) efficiency model 
and (3) comprehensive dynamic models. 
Given the widely-varying vehicle 
configurations and loads, the vehicle fuel 

efficiency model can only be meaningful 
given explicit estimation of road grade, 
vehicle mass, and resistance parameters. 
The comprehensive dynamic model will 
represent dynamic state dependencies 
between many data channels of interest, 
such as oil pressure and coolant 
temperature, which can be analyzed to 
infer vehicle and engine health. 

 
3.1 Vehicle Road Grade and 

Resistance Modeling 
The vehicle road grade estimation and 

resistance modeling are crucial to reliable, 
accurate assessment of vehicle and engine 
health and early detection of incipient faults. 
Total vehicle propulsion resistance can be 
modeled using the following form: 

 2
1 2 3R C C v C v Mgα= + + +  (15) 

where Ci, i=1…3 are unknown constants, v 
is vehicle speed, M is vehicle mass, g is 
acceleration due to gravity, and α is the 
road grade. This representation includes: 
(1) friction force losses that are not a 
function of speed (including the primary 
effect of tire rolling loss force), (2) 
resistance effects that are linearly 
proportional to speed (often negligible on 
smooth, paved highways), (3) losses that 
are proportional to the square of the 
vehicle speed (aerodynamic losses), and 
(4) resistance due to road grade [3]. Given 
the known model structure of (15), we can 
design an adaptive scheme to estimate the 
unknown parameters C1, C2, C3, and M, 
which are uncertain due to variations in 
vehicle configuration and loading and are 
needed for accurate vehicle modeling. 



As aforementioned, the construction of 
robust models is important in model-based 
fault detection and isolation (FDI) schemes 
because differences in the model 
predictions and observed data that cannot 
be attributed to noise will be considered to 
be fault events. Barron Associates has 
recently developed a new adaptive 
estimation technique that is a 
computationally-efficient method for 
identifying the parameters of 
physics-based models. The technique can 
be applied effectively to any dynamic 
system having a known model structure, 
but unknown and/or time-varying 
parameters. 

In the present application to vehicle 
resistance modeling, it is straightforward to 
implement the new methodology with the 
vector of unknown parameters defined as 

  (16) 1 2 3[ TC C C Mθ = ]

and the regressor vector of measured 
quantities (all of which may be extracted 
from the existing AMSAA vehicle 
instrumentation) defined as  

 2[1 ] .Tv vφ α=  (17) 
The unknown parameters can be 
estimated online directly from the 
measured data.  

 
3.2 Vehicle Mass Estimation 

The acquired data are sufficiently 
well-defined to allow for offline analysis of our 
adaptive algorithms. Several methods of 
estimating various aspects of the parametric 
vehicle model are found in the literature. Some 
of these models ignore the individual 
contributions of aerodynamic drag and rolling 

resistance [ 4 , 5 ]. Others use least-squares 
techniques with existing sensor data to 
account for the lack of other sensors that may 
provide more useful or accurate information 
[6,7]. We seek to improve upon some of the 
previous methods by making use of the ample 
sensor data to obtain estimates of the relevant 
vehicle parameters using our adaptive 
parameter estimation techniques. 

Using Newton’s law, we can write the 
balance of forces on the vehicle in the 
longitudinal axis as a sum of components [6]:  

 .wheelF F RΣ = −  (18) 
We assume the propulsive force of the vehicle 
to be proportional to engine torque:  

 max
wheel

w

pTF k
r

=  (19) 

where p is the percent of maximum engine 

torque for the given engine speed, Tmax, 

rw  is the radius of the wheels and k 

represents efficiency and transmission 
effects. It is well known that the 
aerodynamic drag is proportional to the 
velocity squared and that friction losses 
due to engine speed, as well as the effects 
of sway or bumps in the road are linearly 
proportional to the velocity. However, 
because the frictional forces on the 
foundation brakes are not well-known, 

Fbrake  can at best be assumed to be 

invariant with velocity. In practice, online 
estimation of resistance parameters is 
suspended when the foundation brakes of 
the vehicle are enabled [8]. Because we 
assume the contribution of the brakes to be 
negligible while the vehicle is not 



experiencing any significant deceleration 
events, and because the rolling resistance 
can be considered constant and simply 
subtracted from the accelerometer signal, 
for the purposes of our analysis we 
assume this component to be zero. 

The net sum of the forces on the vehicle 
given by (18) can be written in terms of its 
acceleration a. As such, we can rewrite 
(18) as a balance of acceleration terms:  

  

 21 sin( ).max dr

w

pT kka k v v g
m r m m

α= − − −  (20) 

This allows us to isolate parameters and 
create a parameter vector 

1 T
Tdr kk g

m m m
θ ⎡= ⎢⎣ ⎦

⎤
⎥  and a regressor vector 

2
T

max

w

pTk v v sin
r

φ α
⎡ ⎤

= − − −⎢
⎣ ⎦

⎥ . Doing so 

allows us to easily fuse the algorithm with 
available online sensor data. The model is 
then  

 .Ta θ φ=  (21) 
To identify the parameter vector θ, we use 
ou adaptive parameter estimation 
algorithms using the corrected longitudinal 

accelerometer signal, as , in our error 

model  

 .T
s sa a aε θ φ= − = −  (22) 

Though at first it may seem counterintuitive 
to identify the gravitational constant, doing 
so provides useful analytic data. If the 
gravitational constant does not remain 
constant, it suggests that the choice of gain 
may be inappropriate. Furthermore, if the 

constant converges but is identified as 
something other than the known value of g, 
then it may indicate a problem in 
orientation of the accelerometer, potentially 
a roll offset that is not identified using other 
techniques. 

Using a rough estimate of the mass to 
create an initial parameter vector θ(0), we 
applied the iterative online algorithm to the 
AMSSA data to estimate the vehicle mass 
and resistance parameters. The road 
speed and road grade values were 
obtained and corrected via the methods 
described previously. Figure 3 shows 
convergence of the resistance parameters. 
The model error is shown in Figure 4. 

 
Figure 3:  Estimated Vehicle Parameters 

 

Figure 4:  Model Error from Est. Parameters 



4 RAPTOR Vehicle Model 
SwRI’s latest generation of vehicle 

modeling software, which was used as the 
simulation platform, is the Rapid 
Automotive Performance Testing and 
Optimization Resource (RAPTOR™) - A 
Virtual Vehicle Test and Development 
Environment. RAPTOR is a modular 
modeling and development simulation tool 
for vehicle fuel economy, performance, and 
emissions in both virtual and 
hardware-in-the-loop environments. 
RAPTOR™ allows the user to configure a 
virtual vehicle from component and 
sub-component models. RAPTOR™ is an 
application program written in MATLAB 
and Simulink to ensure modularity and 
flexibility for many vehicle configurations. 
RAPTOR™ is composed of system and 
subsystem libraries that can be configured 
and stored as complete vehicles. In 
addition to the vehicle library, primary 
standard subsystem libraries include the 
Engine Library (engine mechanical, fuel 
rate, turbo, heat rejection, fuel shut off 
control, emissions, warmup), Engine 
Accessories Library (air conditioning, 
power steering, alternator system, cooling 
fan, generic mechanical, generic electrical), 
Launch Device Library (torque converter, 
clutch), Manual or Automatic Transmission 
Library (transmission gearbox, shift logic), 
Continuously Variable Transmission 
(transmission ratio mechanism, ratio 
scheduling), Transfer Case Library 
(differential/axles), and the Tire Library 
(rolling resistance, traction coefficient, 
dynamic radius). 

SwRI has previously created and 

validated a RAPTOR™ model of a 2.5 ton 
LMTV. Although the LMTV model may not 
be identical to the configuration of any of 
the LMTVs for which AMSAA data were 
collected, it is a validated, realistic LMTV 
model suitable for demonstration and 
evaluation of underlying FUME 
technologies and algorithms. 

We use the RAPTOR™ model to inject 
abrupt faults and dynamic chances as well 
as simulated accelerated long-term 
efficiency losses due to component wear. 
Figure 5 shows the vehicle speed and 
drivetrain torque output during a simulated 
accelerated increase load. Figure 6 shows 
the fuel consumption during the same 
event. This simulation could correspond to 
increased engine friction forces due to 
accessory component wear or potentially 
to wear in the wheel bearings or hub 
assembly. 

 

 
Figure 5:  Accelerated Friction Buildup 



 
Figure 6:  Fuel Flow during Friction Buildup 

 
5 Conclusions 

An affordable, retrofittable intelligent 
vehicle performance and fuel economy 
maximization system would have 
widespread application to military tactical 
and non-tactical ground vehicles as well as 
commercial vehicles. Barron Associates, 
Inc. and SwRI conducted a successful 
research effort in collaboration with the U.S. 
Army RDECOM to demonstrate the 
feasibility of the Fuel Usage Monitor and 
Economizer (FUME) — an intelligent, open 
architecture vehicle monitoring and fuel 
efficiency optimization system. FUME will 
feature vehicle and engine health 
monitoring and real-time operational 
guidance to maximize fuel efficiency and 
extend equipment life given the current 
operating conditions. Key underlying 
FUME technologies include mathematical 
modeling of dynamic systems, real-time 
adaptive parameter estimation, 
model-based diagnostics, and intelligent 
usage monitoring.  

The first phase of the research included 
application to both real and simulated 

vehicle data. Application of FUME 
algorithms to real vehicle data afforded the 
opportunity to address many of the 
complexities encountered in the field, such 
as sensor noise and ambiguity, 
discernment of vehicle state in a complex 
environment, and sensor validation and 
calibration issues. Importantly, algorithms 
for the accurate estimation of vehicle 
acceleration, road grade, and vehicle mass 
— all of which are crucial to reliable vehicle 
and powertrain models needed for 
diagnostics — were developed and applied 
to real vehicle data. Application of FUME 
algorithms to a validated FMTV 
RAPTOR™ simulation afforded the 
opportunity to conduct controlled 
experiments for the purposes of algorithm 
development and demonstration.  

The next phase of the research effort 
will include implementation of a FUME 
prototype using COTS hardware 
components as well as design and 
implementation of a RAPTOR™-based 
vehicle emulator that will enable realistic 
engine-in-the-loop tests prior to in-vehicle 
deployment.  
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